Search results for "unbiased estimator"
showing 10 items of 16 documents
Construction and optimality of a special class of balanced designs
2006
The use of balanced designs is generally advisable in experimental practice. In technological experiments, balanced designs optimize the exploitation of experimental resources, whereas in marketing research experiments they avoid erroneous conclusions caused by the misinterpretation of interviewed customers. In general, the balancing property assures the minimum variance of first-order effect estimates. In this work the authors consider situations in which all factors are categorical and minimum run size is required. In a symmetrical case, it is often possible to find an economical balanced design by means of algebraic methods. Conversely, in an asymmetrical case algebraic methods lead to e…
Cross-Layer MAC Protocol for Unbiased Average Consensus Under Random Interference
2019
Wireless Sensor Networks have been revealed as a powerful technology to solve many different problems through sensor nodes cooperation. One important cooperative process is the so-called average gossip algorithm, which constitutes a building block to perform many inference tasks in an efficient and distributed manner. From the theoretical designs proposed in most previous work, this algorithm requires instantaneous symmetric links in order to reach average consensus. However, in a realistic scenario wireless communications are subject to interferences and other environmental factors, which results in random instantaneous topologies that are, in general, asymmetric. Consequently, the estimat…
Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels
2011
We present a comprehensive analysis of the performance of different classes of Gaussian states in the estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states, the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for both parameters two-mode squeezed vacuum states are more efficient than either coherent, thermal or single-mode squeezed states. This suggests that at high energy regimes two-mode squeezed vacuum states are optimal within the Gaussian setup. This optimality result i…
Constrained minimum variance control of nonsquare LTI MIMO systems
2010
Constrained minimum variance control is offered for nonsquare LTI MIMO systems. A constrained control design takes advantage of the so-called control zeros. The new control strategy is compared with familiar generalized minimum variance control and possible application areas of the two are discussed.
A novel Stochastic Discretized Weak Estimator operating in non-stationary environments
2012
The task of designing estimators that are able to track time-varying distributions has found promising applications in many real-life problems. A particularly interesting family of distributions are the binomial/multiomial distributions. Existing approaches resort to sliding windows that track changes by discarding old observations. In this paper, we report a novel estimator referred to as the Stochastic Discretized Weak Estimator (SDWE), that is based on the principles of Learning Automata (LA). In brief, the estimator is able to estimate the parameters of a time varying binomial distribution using finite memory. The estimator tracks changes in the distribution by operating on a controlled…
Statistical Analysis of a Method to Predict Drug–Polymer Miscibility
2015
In this study, a method proposed to predict drug-polymer miscibility from differential scanning calorimetry measurements was subjected to statistical analysis. The method is relatively fast and inexpensive and has gained popularity as a result of the increasing interest in the formulation of drugs as amorphous solid dispersions. However, it does not include a standard statistical assessment of the experimental uncertainty by means of a confidence interval. In addition, it applies a routine mathematical operation known as "transformation to linearity," which previously has been shown to be subject to a substantial bias. The statistical analysis performed in this present study revealed that t…
New Results in Generalized Minimum Variance Control of Computer Networks
2014
In this paper new results in adaptive (generalized) minimum variance control of packet switching computer networks are presented. New solutions, corresponding to the new inverses of the nonsquare polynomial matrices, can be used for design of robust control of multivariable systems with different number of inputs and outputs. Application of polynomial matrix inverses with arbitrary degrees of freedom creates the possibilities to optimal control of computer networks in terms of usage their maximal bandwidth. Simulation examples made in Matlab environment show big potential of presented approach. DOI: http://dx.doi.org/10.5755/j01.itc.43.3.6268
A kriging interpolation strategy for the optimization of Acidithiobacillus ferrooxidans biomass production using fed-batch bioreactors
2008
In this work, a procedure for the optimization of Acidithiobacillus ferrooxidans biomass production in fed-batch reactors using a model based on optimal spatial interpolation of experimental data is proposed. The approach is useful in those cases where specific growth and substrate consumption rates are unknown. Based on interpolation, the optimal values of biomass and substrate concentrations set points are obtained at the minimum of 2-dimensional cost function. In the fed-batch reactor biomass and substrate concentrations are controlled at their set points by changing the input flow and its concentration. We propose a minimum variance control strategy which improves the classical proporti…
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
2017
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…
Variance Estimation and Asymptotic Confidence Bands for the Mean Estimator of Sampled Functional Data with High Entropy Unequal Probability Sampling …
2013
For fixed size sampling designs with high entropy it is well known that the variance of the Horvitz-Thompson estimator can be approximated by the Hajek formula. The interest of this asymptotic variance approximation is that it only involves the first order inclusion probabilities of the statistical units. We extend this variance formula when the variable under study is functional and we prove, under general conditions on the regularity of the individual trajectories and the sampling design, that it asymptotically provides a uniformly consistent estimator of the variance function of the Horvitz-Thompson estimator of the mean function. Rates of convergence to the true variance function are gi…